Problem: Dissolving 3.0 g of CaCl2(s) in 150.0 g of water in a calorimeter (Figure 5.12) at 22.4°C causes the temperature to rise to 25.8°C. What is the approximate amount of heat involved in the dissolution, assuming the specific heat of the resulting solution is 4.18 J/g°C? Is the reaction exothermic or endothermic?

FREE Expert Solution

+qdissolution=-qsolution


q=mcΔT


qdissolution=-(msolutioncΔT)


86% (447 ratings)
View Complete Written Solution
Problem Details

Dissolving 3.0 g of CaCl2(s) in 150.0 g of water in a calorimeter (Figure 5.12) at 22.4°C causes the temperature to rise to 25.8°C. What is the approximate amount of heat involved in the dissolution, assuming the specific heat of the resulting solution is 4.18 J/g°C? Is the reaction exothermic or endothermic?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Calorimetry concept. You can view video lessons to learn Calorimetry. Or if you need more Calorimetry practice, you can also practice Calorimetry practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Tate's class at CSUSB.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry - OpenStax 2015th Edition. You can also practice Chemistry - OpenStax 2015th Edition practice problems.