Use the equation:

$\overline{){{\mathbf{Q}}}_{{\mathbf{absorbed}}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathbf{Q}}}_{{\mathbf{released}}}}\phantom{\rule{0ex}{0ex}}\overline{){{\mathbf{m}}}_{{\mathbf{1}}}{\mathbf{C}}{\mathbf{(}}{{\mathbf{T}}}_{{\mathbf{f}}}{\mathbf{-}}{\mathbf{Ti}}{\mathbf{)}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{{\mathbf{m}}}_{{\mathbf{2}}}{\mathbf{C}}{\mathbf{(}}{{\mathbf{T}}}_{{\mathbf{f}}}{\mathbf{-}}{\mathbf{Ti}}{\mathbf{)}}}$

Using the mass, density and V provided:

$\overline{){\mathbf{d}}_{\mathbf{1}}}{\mathbf{V}}_{\mathbf{1}}\overline{)\mathbf{C}}{\mathbf{(}{\mathbf{T}}_{{\mathbf{f}}}\mathbf{-}{\mathbf{T}}_{\mathbf{i}}\mathbf{)}}_{\mathbf{1}}\mathbf{}\mathbf{=}\mathbf{}\overline{){\mathbf{d}}_{{\mathbf{2}}}}{\mathbf{V}}_{\mathbf{2}}\overline{)\mathbf{C}}{\mathbf{(}{\mathbf{T}}_{{\mathbf{f}}}\mathbf{-}{\mathbf{T}}_{\mathbf{i}}\mathbf{)}}_{\mathbf{2}}\mathbf{}\phantom{\rule{0ex}{0ex}}{\mathbf{V}}_{\mathbf{1}}\left(\frac{{({T}_{{f}}-{T}_{i})}_{1}}{{({T}_{{f}}-{T}_{i})}_{2}}\right)\mathbf{=}{\mathbf{V}}_{\mathbf{2}}$

How many milliliters of water at 23°C with a density of 1.00 g/mL must be mixed with 180 mL (about 6 oz) of coffee at 95°C so that the resulting combination will have a temperature of 60°C? Assume that coffee and water have the same density and the same specific heat.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Thermal Equilibrium concept. You can view video lessons to learn Thermal Equilibrium. Or if you need more Thermal Equilibrium practice, you can also practice Thermal Equilibrium practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Dixon's class at UCF.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry - OpenStax 2015th Edition. You can also practice Chemistry - OpenStax 2015th Edition practice problems.