All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Gases such as CO are gradually oxidized in the atmosphere, not by O 2 but by the hydroxyl radical, ·OH, a species with one fewer electron than a hydroxide ion. At night, the ·OH concentration is nearl

Problem

Gases such as CO are gradually oxidized in the atmosphere, not by O 2 but by the hydroxyl radical, ·OH, a species with one fewer electron than a hydroxide ion. At night, the ·OH concentration is nearly zero, but it increases to 2.5×1012 molecules/m3 in polluted air during the day. At daytime conditions of 1.00 atm and 22°C, what is the partial pressure and mole percent of ·OH in air?