All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: To study a key fuel-cell reaction, a chemical engineer has 20.0-L tanks of H 2 and of O2 and wants to use up both tanks to form 28.0 mol of water at 23.8°C. (a) Use the ideal gas law to find the press

Problem

To study a key fuel-cell reaction, a chemical engineer has 20.0-L tanks of H 2 and of O2 and wants to use up both tanks to form 28.0 mol of water at 23.8°C. 

(a) Use the ideal gas law to find the pressure needed in each tank. 

(b) Use the van der Waals equation to find the pressure needed in each tank.

(c) Compare the results from the two equations.