All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Canadian chemists have developed a modern variation of the 1899 Mond process for preparing extremely pure metallic nickel. A sample of impure nickel reacts with carbon monoxide at 50°C to form gaseous

Problem

Canadian chemists have developed a modern variation of the 1899 Mond process for preparing extremely pure metallic nickel. A sample of impure nickel reacts with carbon monoxide at 50°C to form gaseous nickel carbonyl, Ni(CO)4.

(a) How many grams of nickel can be converted to the carbonyl with 3.55 m 3 of CO at 100.7 kPa?

(b) The carbonyl is then decomposed at 21 atm and 155°C to pure (>99.95%) nickel. How many grams of nickel are obtained per cubic meter of the carbonyl?