All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: An environmental engineer analyzes a sample of air contaminated with sulfur dioxide. To a 500.-mL sample at 700. torr and 38°C, she adds 20.00 mL of 0.01017 M aqueous iodine, which reacts as follows:S

Problem

An environmental engineer analyzes a sample of air contaminated with sulfur dioxide. To a 500.-mL sample at 700. torr and 38°C, she adds 20.00 mL of 0.01017 M aqueous iodine, which reacts as follows:

SO2(g) + I2(aq) + H2O(l) ⟶ HSO4(aq) + I(aq) + H+(aq) [unbalanced]

Excess I2 reacts with 11.37 mL of 0.0105 M sodium thiosulfate:

I2(aq) + S2O32−(aq) ⟶ I(aq) + S4O62−(aq) [unbalanced]

What is the volume % of SO2 in the air sample?