Problem: Does a photon of visible light (λ ≈ 400 to 700 nm) have sufficient energy to excite an electron in a hydrogen atom from the n = 1 to the n = 5 energy state? From the n = 2 to the n = 6 energy state?

FREE Expert Solution

We use the Balmer Equation below to get the wavelength, needed to excite an electron with the given situations.

We have to know that this equation is written to provide the wavelength for the energy emitted when an electron goes from a higher to a lower energy level.   To get the right sign, we just need to reverse the final and initial energy levels.

81% (115 ratings)
View Complete Written Solution
Problem Details

Does a photon of visible light (λ ≈ 400 to 700 nm) have sufficient energy to excite an electron in a hydrogen atom from the n = 1 to the n = 5 energy state? From the n = 2 to the n = 6 energy state?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Bohr and Balmer Equations concept. If you need more Bohr and Balmer Equations practice, you can also practice Bohr and Balmer Equations practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Decoste's class at UIUC.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition. You can also practice Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition practice problems.