All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The gravitational force exerted by an object is given by F = mg, where F is the force in newtons, m is the mass in kilograms, and g is the acceleration due to gravity (9.81 m/s 2).(a) Use the definition of the pascal to calculate the mass (in kg) of the atmosphere above 1 m  2 of ocean.(b) Osmium (Z = 76) is a transition metal in Group 8B(8) and has the highest density of any element (22.6 g/mL). If an osmium column is 1 m2 in area, how high must it be for its pressure to equal atmospheric pressure? [Use the answer from part (a) in your calculation.]

Problem

The gravitational force exerted by an object is given by F = mg, where F is the force in newtons, m is the mass in kilograms, and g is the acceleration due to gravity (9.81 m/s 2).

(a) Use the definition of the pascal to calculate the mass (in kg) of the atmosphere above 1 m  2 of ocean.

(b) Osmium (Z = 76) is a transition metal in Group 8B(8) and has the highest density of any element (22.6 g/mL). If an osmium column is 1 m2 in area, how high must it be for its pressure to equal atmospheric pressure? [Use the answer from part (a) in your calculation.]