Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: At a certain temperature the rate of this reaction is second order in H2CO3 with a rate constant of 4.5M-1s-1. H2CO3 (aq) → H2O (aq) + CO2 (aq)Suppose a vessel contains H2CO3 at a concentration of 0.8

Problem

At a certain temperature the rate of this reaction is second order in H2CO3 with a rate constant of 4.5M-1s-1

H2CO3 (aq) → H2O (aq) + CO2 (aq)

Suppose a vessel contains H2CO3 at a concentration of 0.800 M. Calculate how long it takes for the concentration of H2CO3 to decrease to 9.0% of its initial value. You may assume no other reaction is important. 

Round your answer to 2 significant digits.