Problem: At a certain temperature the rate of this reaction is second order in H3PO4 with a rate constant of 10.3 M-1 • s-1. 2H3PO4 (aq) →  P2O5 (aq) + 3H2O (aq) Suppose a vessel contains H3PO4 at a concentration of 1.29 M. Calculate the concentration of H3PO4 in the vessel 1.00 seconds later. You may assume no other reaction is important. Round your answer to 2 significant digits.

FREE Expert Solution
93% (322 ratings)
View Complete Written Solution
Problem Details

At a certain temperature the rate of this reaction is second order in H3PO4 with a rate constant of 10.3 M-1 • s-1

2H3PO4 (aq) →  P2O5 (aq) + 3H2O (aq) 

Suppose a vessel contains H3PO4 at a concentration of 1.29 M. Calculate the concentration of H3PO4 in the vessel 1.00 seconds later. You may assume no other reaction is important. 

Round your answer to 2 significant digits.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Integrated Rate Law concept. You can view video lessons to learn Integrated Rate Law. Or if you need more Integrated Rate Law practice, you can also practice Integrated Rate Law practice problems.