Problem: The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y = mx + b. Part CThe reactant concentration in a first-order reaction was 5.10 x 10-2 M after 20.0 S and 8.70 x 10-3 M after 75.0 S. What is the rate constant for this reaction? Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash. Part D The reactant concentration in a second-order reaction was 0.610 M after 210 s and 7.10 x 10-2 M after 785 S. What is the rate constant for this reaction?Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash.

FREE Expert Solution
83% (125 ratings)
View Complete Written Solution
Problem Details

The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y = mx + b. 

Part C
The reactant concentration in a first-order reaction was 5.10 x 10-2 M after 20.0 S and 8.70 x 10-3 M after 75.0 S. What is the rate constant for this reaction? 

Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash. 

Part D 

The reactant concentration in a second-order reaction was 0.610 M after 210 s and 7.10 x 10-2 M after 785 S. What is the rate constant for this reaction?

Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Integrated Rate Law concept. You can view video lessons to learn Integrated Rate Law. Or if you need more Integrated Rate Law practice, you can also practice Integrated Rate Law practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Billman's class at Abilene Christian University.