Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Consider the following reaction: 2HBr (g) → H2 (g) + Br2 (g) Part A In the first 23.0 s of this reaction the of HBr dropped from 0.550 M to 0.457 M. Calculated the average rate (M•s-1) of the reaction

Solution: Consider the following reaction: 2HBr (g) → H2 (g) + Br2 (g) Part A In the first 23.0 s of this reaction the of HBr dropped from 0.550 M to 0.457 M. Calculated the average rate (M•s-1) of the reaction

Problem

Consider the following reaction: 

2HBr (g) → H2 (g) + Br2 (g) 

Part A 

In the first 23.0 s of this reaction the of HBr dropped from 0.550 M to 0.457 M. Calculated the average rate (M•s-1) of the reaction in this time interval.  Express your answer using two significant figures. 



Part B

If the volume of the reaction in part (a) was 1.50 L. what amount of Br2 (in moles) was formed during the 15.0 s of the reaction?  Express your answer using two significant figures.


Solution

PART A

We can express the average rate of reaction by the change in concentration HBr divided by the change in time and its coefficient in the balanced reaction.


View the complete written solution...