Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The reaction CO2(g) + H2(g) → CO(g) + H2O(g) has an activation energy of 62 kJ/mol. If a catalyst is used the activation energy is lowered to 29 kJ/mol. By how much does the reaction rate at 600°C increase in the presence of the catalyst? (Assume the frequency factors for the catalyzed and uncatalyzed reaction are the same.) a) By a factor of 9.23x104 b) By a factor of 94.3 c) By a factor of 1.28x106 d) By a factor of 746 e) By a factor of 1.005  

Problem

The reaction

CO2(g) + H2(g) → CO(g) + H2O(g)

has an activation energy of 62 kJ/mol. If a catalyst is used the activation energy is lowered to 29 kJ/mol. By how much does the reaction rate at 600°C increase in the presence of the catalyst? (Assume the frequency factors for the catalyzed and uncatalyzed reaction are the same.)

a) By a factor of 9.23x104

b) By a factor of 94.3

c) By a factor of 1.28x106

d) By a factor of 746

e) By a factor of 1.005