Ch.11 - Liquids, Solids & Intermolecular ForcesWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: After an afternoon party, a small cooler full of ice is dumped onto the hot ground and melts. If the cooler contained 5.60 kg of ice and the temperature of the ground was 43.0°C, calculate the energy

Solution: After an afternoon party, a small cooler full of ice is dumped onto the hot ground and melts. If the cooler contained 5.60 kg of ice and the temperature of the ground was 43.0°C, calculate the energy

Problem

After an afternoon party, a small cooler full of ice is dumped onto the hot ground and melts. If the cooler contained 5.60 kg of ice and the temperature of the ground was 43.0°C, calculate the energy that is required to melt all the ice at 0°C. The heat of fusion for water is 80.0 cal/g.


Solution

We’re being asked to calculate the amount of energy required to melt 5.60 kg of ice at 0 ˚C. The problem is not asking us to calculate the heat needed to change the temperature of ice, which means we don’t need the given temperature of 43 ˚C.


Recall that during a phase transition, the temperature is constant. The amount of energy (q) needed to melt a given mass is calculated using:



where m = mass (in g), ΔHfusion = heat of fusion (in cal/g). Note that calorie (cal) is just another unit of energy similar to Joules (J) and 1 cal = 4.184 J.


View the complete written solution...