Ch.18 - ElectrochemistryWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The nicad (nickel-cadmium) batteries have a slightly lower cell potential than the common alkaline value of 1.5 V normally used in flashlights. They have a cadmium anode, which is oxidized to Cd(OH)2(

Problem

The nicad (nickel-cadmium) batteries have a slightly lower cell potential than the common alkaline value of 1.5 V normally used in flashlights. They have a cadmium anode, which is oxidized to Cd(OH)2(s) in a basic background electrolyte of concentrated OH-, and a cathode half-reaction in which NiO(OH)(s) is reduced to Ni(OH)2(s). What is the value of ΔG cell

The standard reduction potentials of the half-reactions in nicad batteries are: 

Cd (OH)2(s) + 2e- → Cd(s) + 2OH-(aq)          E°red = -0.403 V 

2NiO(OH)(s) + 2H2O(l) + 2e- → 2Ni(OH)2(s) + 2OH-(aq)      E°red = 1.32 V