Problem: Some chemical reactions can be initiated by light that carries an energy of 419 kJ/mol. Only light less than a certain wavelength will initiate such reactions. What is the longest wavelength in nanometers that can deliver 419 kJ/mol? Convert the energy m kJ/mol to energy in J/photon. Use Planck's Equation to determine the frequency in hertz. Convert frequency to wavelength in nanometers h = 6.626 x 10^34 J

🤓 Based on our data, we think this question is relevant for Professor Schurmeier's class at UCSD.

FREE Expert Solution
View Complete Written Solution
Problem Details

Some chemical reactions can be initiated by light that carries an energy of 419 kJ/mol. Only light less than a certain wavelength will initiate such reactions. What is the longest wavelength in nanometers that can deliver 419 kJ/mol? 

Convert the energy m kJ/mol to energy in J/photon. Use Planck's Equation to determine the frequency in hertz. Convert frequency to wavelength in nanometers h = 6.626 x 10^34 J


Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the De Broglie Wavelength concept. You can view video lessons to learn De Broglie Wavelength. Or if you need more De Broglie Wavelength practice, you can also practice De Broglie Wavelength practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Schurmeier's class at UCSD.