Ch.6 - Thermochemistry WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A gas mixture at 580.0°C and 113 kPa absolute enters a heat exchanger at a rate of 80.0 m3/hr. The gas leaves the heat exchanger at 150.0°C. The change in enthalpy of the gas during the cooling proces

Problem

A gas mixture at 580.0°C and 113 kPa absolute enters a heat exchanger at a rate of 80.0 m3/hr. The gas leaves the heat exchanger at 150.0°C. The change in enthalpy of the gas during the cooling process is -7.00 kJ/mol. What is the heat required in kW? Assume the gas behaves ideally and that the changes in kinetic and potential energy are negligible.