Ch.14 - Chemical EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A key step in the extraction of iron from its ore isFeO(s) + CO (g) ⇌ Fe (s) + CO2 (g) Kp = 0.403 at 1, 000°CThis step occurs in the 700°C to 1, 200°C zone within a blast furnace. What are the equilib

Problem

A key step in the extraction of iron from its ore is

FeO(s) + CO (g) ⇌ Fe (s) + CO2 (g) Kp = 0.403 at 1, 000°C

This step occurs in the 700°C to 1, 200°C zone within a blast furnace. What are the equilibrium partial pressures of CO(g) and CO2 (g) when 1.2200 atm of CO (g) and excess FeO(s) react in a sealed container at 1, 000°C?