Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: For the first-order reaction, t1/2 = 22.5 h at 20 ºC and 1.5 h at 40 ºC. N2O5 (g) → 2NO2 (g) + 1/2 O2 (g)            a) Calculate the activation energy of this reaction in kJ/mol. b) If the Arrhenius

Solution: For the first-order reaction, t1/2 = 22.5 h at 20 ºC and 1.5 h at 40 ºC. N2O5 (g) → 2NO2 (g) + 1/2 O2 (g)            a) Calculate the activation energy of this reaction in kJ/mol. b) If the Arrhenius

Problem

For the first-order reaction, t1/2 = 22.5 h at 20 ºC and 1.5 h at 40 ºC. 

N2O5 (g) → 2NO2 (g) + 1/2 O2 (g)            

a) Calculate the activation energy of this reaction in kJ/mol. 





b) If the Arrhenius constant A = 2.05 x 10 13 s-1, determine the value of k at 29 ºC in s  -1.