Ch.7 - Quantum MechanicsSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Medical applications of electromagnetic radiation cover the entire spectrum, from gamma rays used to diagnose and treat cancer, to radio waves used in magnetic resonance imaging (MRI). Until recently the tools did not exist to exploit the range from 0.1 to 10 THz, leading some to call this region of the spectrum from 0.1 to 10 THz the “terahertz gap.” But that gap is starting to close as new techniques are developed to explore the terahertz region of the spectrum (Chemistry & Engineering News, 2015, 93, 10-14). It was discovered the terahertz light causes groups of water molecules to coalesce and disassemble repeatedly, and because water permeates most biological studies, terahertz spectroscopy holds considerable promise as important new tool in medical science. A. Calculate the energy (in J) of a 2.4 THz photon.(1 THz = 1 x 1012 Hz = 1 x 1012 s -1 )    Convert your answer above from J to kJ/mol.    B. Calculate the wavelength (in nm) of a 2.4 THz photon.   Do you expect 2.4 THz light to be dangerous to biological tissue? Explain your reasoning. 

Problem

Medical applications of electromagnetic radiation cover the entire spectrum, from gamma rays used to diagnose and treat cancer, to radio waves used in magnetic resonance imaging (MRI). Until recently the tools did not exist to exploit the range from 0.1 to 10 THz, leading some to call this region of the spectrum from 0.1 to 10 THz the “terahertz gap.” But that gap is starting to close as new techniques are developed to explore the terahertz region of the spectrum (Chemistry & Engineering News, 2015, 93, 10-14). It was discovered the terahertz light causes groups of water molecules to coalesce and disassemble repeatedly, and because water permeates most biological studies, terahertz spectroscopy holds considerable promise as important new tool in medical science. 

A. Calculate the energy (in J) of a 2.4 THz photon.

(1 THz = 1 x 1012 Hz = 1 x 1012-1

 

 

 

Convert your answer above from J to kJ/mol. 

 

 

 

B. Calculate the wavelength (in nm) of a 2.4 THz photon.

 

 

 

Do you expect 2.4 THz light to be dangerous to biological tissue? Explain your reasoning.