Ch.7 - Quantum MechanicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A hydrogen atom absorbs a photon with a wavelength of 397.1 nm, which excites the atom’s electron. Determine the electron’s initial quantum level if the transition results in a final quantum level of n = 7.a) n = 4b) n = 3c) n = 1d) n = 2e) n = 5

Solution: A hydrogen atom absorbs a photon with a wavelength of 397.1 nm, which excites the atom’s electron. Determine the electron’s initial quantum level if the transition results in a final quantum level of

Problem

A hydrogen atom absorbs a photon with a wavelength of 397.1 nm, which excites the atom’s electron. Determine the electron’s initial quantum level if the transition results in a final quantum level of n = 7.

a) n = 4

b) n = 3

c) n = 1

d) n = 2

e) n = 5

Solution

We can determine initial quantum level or initial energy level (ninitial) of the electron using the Bohr Equation shown below:

ΔE = energy related to the transition, J/atom
RH = Rydberg constant, 2.178x10-18 J
ni = initial principal energy level
nf = final principal energy level

The energy is not given. However, we can calculate it using the wavelength of the absorbed photon and the equation for the energy of a photon.

Solution BlurView Complete Written Solution