Ch.7 - Quantum MechanicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Calculate the energy, in joules, required to excite a hydrogen atom by causing an electronic transition from the n = 1 to the n = 4 principal energy level.a. 2.07 x 10-29 J b. 2.19 x 105 J c. 2.04 x 1

Solution: Calculate the energy, in joules, required to excite a hydrogen atom by causing an electronic transition from the n = 1 to the n = 4 principal energy level.a. 2.07 x 10-29 J b. 2.19 x 105 J c. 2.04 x 1

Problem

Calculate the energy, in joules, required to excite a hydrogen atom by causing an electronic transition from the n = 1 to the n = 4 principal energy level.

a. 2.07 x 10-29

b. 2.19 x 105

c. 2.04 x 10-18

d. 3.27 x 10-17

e. 2.25 x 10-18 J

Solution

To calculate the energy required for the electronic transition, we will use the Bohr Equation shown below which relates electronic transition to the energy:

ΔE = energy related to the transition
RH = Rydberg constant

ni = initial principal energy level
nf = final principal energy level


Given values:

View the complete written solution...