# Problem: The following data show the rate constant of a reaction measured at several different temperatures.                   Temperature(K)                              Rate Constant (1/s)                           300                                                 3.37×10-3                           310                                                 1.08×10-2                           320                                                 3.21×10-2                           330                                                 8.96×10-2                           340                                                 0.235a. Use an Arrhenius plot to determine the activation barrier for the reaction.b. Use an Arrhenius plot to determine frequency factor for the reaction.

###### FREE Expert Solution

We have plotted the given data in lnk (y) vs. 1/T (x). The graph and line formula is:

This means we need to use the two-point form of the Arrhenius Equation:

where:

m = slope

b = y-intercept

99% (70 ratings)
###### Problem Details

The following data show the rate constant of a reaction measured at several different temperatures.
Temperature(K)                              Rate Constant (1/s)
300                                                 3.37×10-3
310                                                 1.08×10-2
320                                                 3.21×10-2
330                                                 8.96×10-2
340                                                 0.235

a. Use an Arrhenius plot to determine the activation barrier for the reaction.

b. Use an Arrhenius plot to determine frequency factor for the reaction.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Arrhenius Equation concept. You can view video lessons to learn Arrhenius Equation. Or if you need more Arrhenius Equation practice, you can also practice Arrhenius Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor de Laat's class at University of Guelph.