Ch. 17 - Chemical ThermodynamicsSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Use Hess’s law to calculate ∆G°rxn using the following information. NO(g) + O(g) → NO2(g), ∆G°rxn = ? 2O3(g) → 3O2(g), ∆G°rxn = +489.6kJ O2(g) → 2O(g), ∆G°rxn = +463.4kJ NO(g) + O3 → NO2(g) + O2(g), ∆G°rxn = -199.5kJ 277.0 kJ -225.7 kJ 753.5 kJ -1152.5 kJ -676.0 kJ

Problem

Use Hess’s law to calculate ∆G°rxn using the following information.

NO(g) + O(g) → NO2(g), ∆G°rxn = ?

2O3(g) → 3O2(g), ∆G°rxn = +489.6kJ

O2(g) → 2O(g), ∆G°rxn = +463.4kJ

NO(g) + O3 → NO2(g) + O2(g), ∆G°rxn = -199.5kJ

  1. 277.0 kJ
  2. -225.7 kJ
  3. 753.5 kJ
  4. -1152.5 kJ
  5. -676.0 kJ