🤓 Based on our data, we think this question is relevant for Professor Cheng's class at TEXAS.

Since we have a **buffer **we can use the **Henderson-Hasselbalch Equation** to calculate for pH.

$\overline{){\mathbf{p}}{\mathbf{H}}{\mathbf{=}}{\mathbf{p}}{{\mathbf{K}}}_{{\mathbf{a}}}{\mathbf{+}}{\mathbf{l}}{\mathbf{o}}{\mathbf{g}}\left(\frac{\mathbf{c}\mathbf{o}\mathbf{n}\mathbf{j}\mathbf{u}\mathbf{g}\mathbf{a}\mathbf{t}\mathbf{e}\mathbf{}\mathbf{b}\mathbf{a}\mathbf{s}\mathbf{e}}{\mathbf{w}\mathbf{e}\mathbf{a}\mathbf{k}\mathbf{}\mathbf{a}\mathbf{c}\mathbf{i}\mathbf{d}}\right)}$

**pK _{a} for formic acid (HCOOH) is given: **

The p*K _{a}* of formic acid (HCOOH) is 3.74, a monoprotic weak acid. A 1.0 L sample of a buffer with a pH of 4.5 is combined with 0.09 moles of NaOH. What is the new pH of the solution? The ratio of HCOO