All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Use the van der Waal's equation to calculate the pressure (in atm) exerted by 1.00 mol of chlorine gas confined to a volume of 2.00 L at 273K. The value of a = 6.49 L2 atm mol-2, and that of b = 0.056

Solution: Use the van der Waal's equation to calculate the pressure (in atm) exerted by 1.00 mol of chlorine gas confined to a volume of 2.00 L at 273K. The value of a = 6.49 L2 atm mol-2, and that of b = 0.056

Problem

Use the van der Waal's equation to calculate the pressure (in atm) exerted by 1.00 mol of chlorine gas confined to a volume of 2.00 L at 273K. The value of a = 6.49 L2 atm mol-2, and that of b = 0.0562 L mol-1 for chlorine gas.

a) no given answer is close

b) 9.9

c) 4.12

d) 1.54

e) 3.73

Solution

We’re being asked to calculate the pressure exerted by a chlorine gas using the Van der Waal’s equation

The Van der Waals equation is shown below:

P+an2V2V-nb=nRT

P = pressure, atm
V = volume, L
n = # of moles, mol
R = gas constant = 0.08206 (Latm)/(molK)
T = temperature, K
a = polarity coefficient
= size coefficient


Let’s first isolate the pressure in the Van der Waals Equation:

View the complete written solution...