All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: What is the final pressure in atmosphere if 100.0 L of gas at 150.0°C and 1.00 atm pressure is compressed to 5.00 L at 642°C? Zincblende, ZnS, is the most important zinc ore. Roasting (strong heating)

Problem

What is the final pressure in atmosphere if 100.0 L of gas at 150.0°C and 1.00 atm pressure is compressed to 5.00 L at 642°C? Zincblende, ZnS, is the most important zinc ore. Roasting (strong heating) of ZaS is the first step in the commercial production of zinc.

2 ZnS(s) + 3 O2(g) → 2 ZnO(s) + 2 SO2(g)

 

a) no given answer is close

b) 57.1

c) 43.3

d) 128.4

e) 85.6 

 

In the previous question, what volume (in liters) of SO 2(g) forms per liter of O2(g) consumed? Both gases are measured at 25.0°C and 745 mm Hg.

a) no given answer is close 

b) 1.45

c) 1.67

d) 1.33

e) 0.667