Ch.9 - Bonding & Molecular StructureWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Chemical Bonds
Lattice Energy
Lattice Energy Application
Born Haber Cycle
Dipole Moment
Lewis Dot Structure
Octet Rule
Formal Charge
Resonance Structures
Additional Practice
Bond Energy

Solution: In the spaces below draw a Lewis dot diagram showing the presence of all electrons in the molecule or ion. All of these obey the rule that there are eight electrons around each atom. There may be more

Problem

In the spaces below draw a Lewis dot diagram showing the presence of all electrons in the molecule or ion. All of these obey the rule that there are eight electrons around each atom. There may be more than one possible structure but you should draw only one configuration but draw it clearly placing your final answer in the box.

Also indicate the formal charge on each atom. You may use a line ( —) to represent a two electron chemical bond, you may use( • or o or x) to represent an electron but your drawings must be clear and definite.