Ch.13 - Chemical KineticsSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The activation energy for a reaction is 37.6 kJ/mol. The rate constant for the reaction is 5.4 x 10 −3 s −1 at 45 °C. Calculate the rate constant at 145 °C. A) 5.5 × 10 −3 s −1 B) 0.56 s −1 C) 0.16 s −1 D) 8.4 × 10 −3 s −1 E) 0.38 s −1

Problem

The activation energy for a reaction is 37.6 kJ/mol. The rate constant for the reaction is 5.4 x 10 −3 s −1 at 45 °C. Calculate the rate constant at 145 °C.

A) 5.5 × 10 −3 s −1

B) 0.56 s −1

C) 0.16 s −1

D) 8.4 × 10 −3 s −1

E) 0.38 s −1