Ch.11 - Liquids, Solids & Intermolecular ForcesWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Consider a 1 kg block of ice at standard pressure. If it is initially at −5°C and is heated until it is steam at 109°C, how much total heat was added to the sample of water? Use the following thermody

Problem

Consider a 1 kg block of ice at standard pressure. If it is initially at −5°C and is heated until it is steam at 109°C, how much total heat was added to the sample of water? Use the following thermodynamic values for your calculation:

cice = 2.09 J/g K

cwater = 4.184 J/g K

csteam = 2.03 J/g K

∆Hvap = 2260 J/g

∆Hfus = 334 J/g

1. 3950 kJ

2. 2710 kJ

3. 2620 kJ

4. 3040 kJ

5. 28.7 kJ