Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Consider the reaction:
2 NO(g) + O2(g) →2 NO2(g)
If the instantaneous rate of reaction of nitric oxide (NO) is ‐ 0.016 M/s, at what rate is molecular oxygen reacting
A) ‐0.016 M/s
B) ‐0.032 M/s
C) ‐0.008 M/s
D) +0.016 M/s
E) +0.032 M/s
   

Solution: Consider the reaction: 2 NO(g) + O2(g) →2 NO2(g) If the instantaneous rate of reaction of nitric oxide (NO) is ‐ 0.016 M/s, at what rate is molecular oxygen reacting A) ‐0.016 M/s B) ‐0.032 M/s C) ‐0

Problem

Consider the reaction:
2 NO(g) + O2(g) →2 NO2(g)
If the instantaneous rate of reaction of nitric oxide (NO) is ‐ 0.016 M/s, at what rate is molecular oxygen reacting

A) ‐0.016 M/s
B) ‐0.032 M/s
C) ‐0.008 M/s
D) +0.016 M/s
E) +0.032 M/s