Ch.16 - Aqueous Equilibrium WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: How many moles of solid NaF would have to be added to 1.0 L of 1.90 M HF solution to achieve a buffer of pH 3.35? Assume there is no volume change. (Ka for HF = 7.2 x 10 -4) A. 3.1 B. 2.3 C. 1.6 D. 1.0 E. 4.9 

Problem

How many moles of solid NaF would have to be added to 1.0 L of 1.90 M HF solution to achieve a buffer of pH 3.35? Assume there is no volume change.

(Ka for HF = 7.2 x 10 -4)

A. 3.1

B. 2.3

C. 1.6

D. 1.0

E. 4.9