Ch.7 - Quantum MechanicsSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The absorption of light of frequency 1.16 × 10 11 Hz is required for CO molecules to go from the lowest rotational energy level to the next highest rotational energy level. Determine the energy for this transition in kJ/mol. h = 6.626 × 10-34 J ∙ s A) 7.69 ×10-23 kJ/mol B) 46.3 kJ/mol C) 949 kJ/mol D) 0.0463 kJ/mol  

Problem

The absorption of light of frequency 1.16 × 10 11 Hz is required for CO molecules to go from the lowest rotational energy level to the next highest rotational energy level. Determine the energy for this transition in kJ/mol. h = 6.626 × 10-34 J ∙ s

A) 7.69 ×10-23 kJ/mol

B) 46.3 kJ/mol

C) 949 kJ/mol

D) 0.0463 kJ/mol