Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The first-order decomposition of N2O at 1000 K has a rate constant of 0.76 s‒1. If the initial concentration of N2O is 10.9 M, what is the concentration of N 2O after 9.6 s?     A) 1.0 × 10‒3 MB) 8.7 × 10‒3 MC) 1.4 × 10‒3 MD) 3.6 × 10‒3 ME) 7.4 × 10‒3 M

Problem

The first-order decomposition of N2O at 1000 K has a rate constant of 0.76 s‒1. If the initial concentration of N2O is 10.9 M, what is the concentration of N 2O after 9.6 s?     

A) 1.0 × 10‒3 M

B) 8.7 × 10‒3 M

C) 1.4 × 10‒3 M

D) 3.6 × 10‒3 M

E) 7.4 × 10‒3 M