Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Olanzapine is an orally-administered antipsychotic drug used to treat schizophrenia and bipolar disorder. Like most drugs (95%), Olanzapine is eliminated by first-order kinetics. The half-life for Ola

Problem

Olanzapine is an orally-administered antipsychotic drug used to treat schizophrenia and bipolar disorder. Like most drugs (95%), Olanzapine is eliminated by first-order kinetics. The half-life for Olanzapine elimination is 36 hours.

A. Calculate the rate constant for elimination of Olanzapine. (Be sure to include units)

B. The optimal therapeutic range for Olanzapine is 20 to 40 ng/mL. Concentrations of 80 ng/mL are considered to be the upper-limit to avoid adverse side effects.

How long would it take for the concentrations of Olanzapine to drop from 80 ng/mL to 10 ng/mL?

C. By mistake, a patient was given a dose of olanzapine that resulted in a blood serum concentration of 350 ng/mL instead of the desired 35 ng/mL. Calculate how long will it take for the concentration of Olanzapine to drop from 350 ng/mL to 80 ng/mL, the fringe of the "safe zone"?

* Note estimating the amount of time based of half-life is not good enough.   Calculate the time required.