Ch.7 - Quantum MechanicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The de Broglie wavelength of a 455 kg car is found to be 5.43 × 10 –47 nm. Calculate the speed (m/s) of the car.a) 26.8 m/sb) 37.3 m/sc) 2.68 × 1019 m/sd) 3.73 × 107 m/se) 3.00 × 108 m/s

Problem

The de Broglie wavelength of a 455 kg car is found to be 5.43 × 10 –47 nm. Calculate the speed (m/s) of the car.

a) 26.8 m/s

b) 37.3 m/s

c) 2.68 × 1019 m/s

d) 3.73 × 107 m/s

e) 3.00 × 108 m/s

Solution

We’re being asked to calculate the speed of a 455 kg car and a de Broglie wavelength of 5.43 × 10–47 nm.


Recall that the de Broglie wavelength (λ) can be calculated using:


λ=hmv


where: 

h = Planck's constant (6.626 × 10–34 kg • m2/s)

m = mass (in kg)

v = velocity (in m/s)


Solution BlurView Complete Written Solution