Ch.6 - Thermochemistry WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Consider the following reaction: C12H22O11 (s) + 12 O2 (g)      →       13 CO 2 (aq) + 11 H2O (l)  in which 25.0 g of sucrose, C12H22O11 , was burned in a bomb calorimeter with a heat capacity of 8.30

Problem

Consider the following reaction:

 

C12H22O11 (s) + 12 O(g)      →       13 CO (aq) + 11 H2O (l)  

in which 25.0 g of sucrose, C12H22O11 , was burned in a bomb calorimeter with a heat capacity of 8.30 kJ / °C . The temperature inside the calorimeter increases by 27.0 °C. Calculate the change in internal energy, ΔE , for the reaction per mole of sucrose.