Ch.6 - Thermochemistry See all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Internal Energy

See all sections
Sections
Internal Energy
Calorimetry
Hess's Law
Enthalpy of Formation
End of Chapter 6 Problems
Additional Practice
Units of Energy
Endothermic & Exothermic Reactions
Additional Guides
Enthalpy

Solution: Calculate the amount of work done when 2.5 mole of H 2O vaporizes at 1.0 atm and 25°C. Assume the volume of liquid H2O is negligible compared to that of vapor. (1 L atm = 101.3 J)1) -61.9 J2) -6.19 kJ3) 61.9 J4) 5.66 kJ5) 518 J

Problem

Calculate the amount of work done when 2.5 mole of H 2O vaporizes at 1.0 atm and 25°C. Assume the volume of liquid H2O is negligible compared to that of vapor. (1 L atm = 101.3 J)

1) -61.9 J

2) -6.19 kJ

3) 61.9 J

4) 5.66 kJ

5) 518 J