Ch.6 - Thermochemistry See all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Internal Energy
Calorimetry
Hess's Law
Enthalpy of Formation
End of Chapter 6 Problems
Additional Practice
Units of Energy
Endothermic & Exothermic Reactions
Additional Guides
Enthalpy

Solution: Use the following equations C (s) + O2 (g) → CO2 (g)                                                  ΔH     o = 393.5 kJ H2 (g) + 1/2 O2 (g) → H2O (l)                                           ΔH     o = 285.8 kJ 2 C4H10 (g) + 13 O2 (g) → 8 CO2 (g) + 10 H2O (l)           ΔH o = 5754.6 kJ to calculate the heat formation, ΔH of, for butane. 4 C (s) + 5 H2 (g)  →  C4H10 (g) A.  125.7 kJ B. -5880.3 kJ C. -5862.3 kJ D. -5075.3 kJ E. -251.4 kJ    

Problem

Use the following equations

C (s) + O(g) → CO(g)                                                  ΔH     o = 393.5 kJ
H(g) + 1/2 O(g) → H2O (l)                                           ΔH     o = 285.8 kJ
2 C4H10 (g) + 13 O2 (g) → 8 CO(g) + 10 H2O (l)           ΔH = 5754.6 kJ

to calculate the heat formation, ΔH of, for butane.
4 C (s) + 5 H2 (g)  →  C4H10 (g)

A.  125.7 kJ
B. -5880.3 kJ
C. -5862.3 kJ
D. -5075.3 kJ
E. -251.4 kJ