Ch.12 - SolutionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: At 35°C the vapor pressure of pure ethanol (C2H5OH, M = 46.1 g/mol) is pE° = 100.0 torr, and the vapor pressure of pure 1-propanol (C3H7OH, M = 60.1 g/mol) is pP° = 37.6 torr.  A solution at equilibrium at this temperature has a total pressure p = 84.2 torr.  Assuming the solution is ideal, what is the partial pressure of ethanol above the solution?

Problem

At 35°C the vapor pressure of pure ethanol (C2H5OH, M = 46.1 g/mol) is pE° = 100.0 torr, and the vapor pressure of pure 1-propanol (C3H7OH, M = 60.1 g/mol) is pP° = 37.6 torr.  A solution at equilibrium at this temperature has a total pressure p = 84.2 torr.  Assuming the solution is ideal, what is the partial pressure of ethanol above the solution?