For the first part, we’re being asked to calculate the freezing point of a solution containing 10.6 g FeCl_{3} in 159 g water.

Recall that the freezing point of a solution is *lower* than that of the pure solvent and the ** change in freezing point (ΔT_{f})** is given by:

$\overline{){{\mathbf{\Delta T}}}_{{\mathbf{f}}}{\mathbf{=}}{{\mathbf{T}}}_{\mathbf{f}\mathbf{,}\mathbf{}\mathbf{pure}\mathbf{}\mathbf{solvent}}{\mathbf{-}}{{\mathbf{T}}}_{\mathbf{f}\mathbf{,}\mathbf{}\mathbf{solution}}}$

The ** change in freezing point** is also related to the molality of the solution:

$\overline{){{\mathbf{\Delta T}}}_{{\mathbf{f}}}{\mathbf{=}}{{\mathbf{imK}}}_{{\mathbf{f}}}}$

where:

**i** = van’t Hoff factor

**m** = molality of the solution (in m or mol/kg)

**K _{f}** = freezing point depression constant (in ˚C/m)

Recall that the ** Molality of a solution** is given by:

$\overline{){\mathbf{molality}}{\mathbf{\left(}}{\mathbf{m}}{\mathbf{\right)}}{\mathbf{=}}\frac{\mathbf{moles}\mathbf{}\mathbf{solute}}{\mathbf{kg}\mathbf{}\mathbf{solvent}}}$

Calculate the freezing point of a solution containing 10.6 g FeCl_{3} in 159 g water

Calculate the boiling point of a solution above.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Freezing Point Depression concept. If you need more Freezing Point Depression practice, you can also practice Freezing Point Depression practice problems.