Recall that the ** energy of a photon (E)** is given by:

$\overline{){\mathbf{E}}{\mathbf{=}}{\mathbf{hv}}}\left(1\right)$

where:

**h** = Planck’s constant (6.626 × 10^{–34} J • s)

**v** = frequency (in s^{–1})

Also, recall that the frequency (v) and wavelength (λ) are related:

$\overline{){\mathbf{\lambda}}{\mathbf{=}}\frac{\mathbf{c}}{\mathbf{v}}}\left(2\right)$

where:

**c** = speed of light (3.0 × 10^{8} m/s)

How much energy (in kJ) do 3.0 moles of photons, all with a wavelength of 655 nm, contain?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the The Particle Nature of Light concept. You can view video lessons to learn The Particle Nature of Light. Or if you need more The Particle Nature of Light practice, you can also practice The Particle Nature of Light practice problems.