# Problem: Part A. A microwave oven operates at 2.80 GHz. What is the wavelength of the radiation produced by this appliance? Express the wavelength numerically in nanometers. Electromagnetic radiation behaves both as particles (called photons) and as waves. Wavelength (λ) and frequency (ν) are related according to the equation:c=λ×νwhere c is the speed of light (3.00 × 108 m/s). The energy (E in joules) contained in one quantum of electromagnetic radiation is described by the equation:E=h×νwhere h is Planck's constant (6.626 × 10−34 J•s). Note that frequency has units of inverse seconds (s−1), which are more commonly expressed as hertz (Hz).

###### FREE Expert Solution
80% (396 ratings) View Complete Written Solution
###### Problem Details

Part A. A microwave oven operates at 2.80 GHz. What is the wavelength of the radiation produced by this appliance?

Express the wavelength numerically in nanometers.

Electromagnetic radiation behaves both as particles (called photons) and as waves. Wavelength (λ) and frequency (ν) are related according to the equation:

c=λ×ν

where c is the speed of light (3.00 × 108 m/s). The energy (E in joules) contained in one quantum of electromagnetic radiation is described by the equation:

E=h×ν

where h is Planck's constant (6.626 × 10−34 J•s). Note that frequency has units of inverse seconds (s−1), which are more commonly expressed as hertz (Hz).