** Face-centered cubic lattice** contains an atom in each of the face of the cube and an atom in each of the corners:

**a) Cu atoms ****per cm**^{3}

$\frac{\mathbf{8}\mathbf{.}\mathbf{96}\mathbf{}{\mathbf{}}\overline{)\mathbf{g}\mathbf{}}}{{\mathbf{cm}}^{\mathbf{3}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\overline{)\mathbf{mol}\mathbf{}\mathbf{Cu}}}{\mathbf{63}\mathbf{.}\mathbf{55}\overline{)\mathbf{}\mathbf{g}\mathbf{}\mathbf{Cu}}}\mathbf{\times}\frac{\mathbf{6}\mathbf{.}\mathbf{022}\mathbf{}\mathbf{\times}\mathbf{}{\mathbf{10}}^{\mathbf{23}}\mathbf{}\mathbf{Cu}\mathbf{}\mathbf{atoms}}{\mathbf{1}\mathbf{}\overline{)\mathbf{mol}\mathbf{}\mathbf{Cu}}}$

**= 8.49 x 10 ^{22 }Cu atoms/cm^{3}**

**There are 8.49 x 10 ^{22 }Cu atoms per cubic centimeter of Cu**

**b) Unit cells per 1 cm ^{3 }Cu**

**Cu atoms per unit cell:**

**corner atoms = 1/8 →***8 corners***face atoms = 1/2 →***6 faces*

**$\frac{\mathbf{atoms}}{\mathbf{unit}\mathbf{}\mathbf{cell}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{8}\left(\frac{1}{8}\right)\mathbf{+}\mathbf{}\mathbf{6}\left(\frac{1}{2}\right)\mathbf{}\mathbf{=}\mathbf{}$4 Cu atoms/ unit cell**

The density of solid Cu is 8.96 g/cm^{3}. How many atoms are present per cubic centimeter of Cu?

If a solid, Cu adopts a face-centered cubic unit cell. How many unit cells are present per cubic centimeter of Cu?

What is the volume of a unit cell of this metal?

What is the edge length of a unit cell of Cu?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Unit Cell concept. You can view video lessons to learn Unit Cell. Or if you need more Unit Cell practice, you can also practice Unit Cell practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Woodrum's class at UK.