$\overline{){\mathbf{E}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{hv}}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{v}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}\frac{\mathbf{E}}{\mathbf{h}}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{c}}{\mathbf{}}{\mathbf{=}}{\mathbf{\lambda}}{\mathbf{}}{\mathbf{\xb7}}{\mathbf{}}{\mathbf{\nu}}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{v}}{\mathbf{}}{\mathbf{=}}\frac{\mathbf{c}}{\mathbf{\lambda}}\mathbf{}}$

For 1 photon

wavelength = λ

frequency = ν

Energy = E (kJ/mol)

Consider a single photon with a wavelength of λ, a frequency of ν, and an energy of E. What is the wavelength, frequency, and energy of a pulse of light containing 100 of these photons?

Hint: Consider which properties can be expressed \"per mole\" of photons. For example, frequency is measured in hertz; have you ever heard of Hz/mol?