To** calculate new pressure**, we use** Gay-Lussac's Law**:

$\overline{)\frac{{\mathbf{P}}_{\mathbf{1}}}{{\mathbf{T}}_{\mathbf{1}}}{\mathbf{=}}\frac{{\mathbf{P}}_{\mathbf{2}}}{{\mathbf{T}}_{\mathbf{2}}}}$

Rearranging to solve for P_{2}:

$\overline{){{\mathbf{P}}}_{{\mathbf{2}}}{\mathbf{=}}\frac{{\mathbf{P}}_{\mathbf{1}}}{{\mathbf{T}}_{\mathbf{1}}}\left({\mathbf{T}}_{\mathbf{2}}\right)}$

One mole of an ideal gas is sealed in a 22.4-L container at a pressure of 1 atm and a temperature of 273 K. The temperature is then increased to 306 K, but the container does not expand. What will the new pressure be?

The most appropriate formula for solving this problem includes only which variables?

Enter the required variables, separated by commas (e.g., P,V,T).