Ch.14 - Chemical EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Problem

The table below lists the equilibrium concentrations for H 2(g), I2(g), and HI(g) in the given reaction.

H(g) + I(g) ⇌ 2HI (g)

At 500 K, the gases have equilibrium partial pressures of PI2 = 1.00 atm, PH2 = 1.00 atm, and PHI = 0.0795 atm. An addition of 0.100 atm HI(g) is made to this system.

Determine the final partial pressures for H2(g), I2(g), and HI(g) when the system returns to equilibrium (i.e., after the addition of 0.100 atm HI(g)). 

a. PI2 = 1.086 atm, PH2 = 1.086 atm, and PHI = 0.00695 atm

b. PI2 = 1.275 atm, PH2 = 1.275 atm, and PHI = 0.0225 atm

c. PI2 = 1.621 atm, PH2 = 1.621 atm, and PHI = 0.00731 atm

d. PI2 = 1.072 atm, PH2 = 1.072 atm, and PHI = 0.00642 atm

e. PI2 = 1.372 atm, PH2 = 1.372 atm, and PHI = 0.00614 atm

Solution BlurView Complete Written Solution