# Problem: Under constant pressure conditions, a 107 g block of metal at 125°C is added to a mixture of 120 g of water and 22 g of ice at 0°C. As a result, the ice melts completely and the temperature of the water increases to 7°C.Determine the identity of the metal if it has a molar heat capacity of 24.6 J/mol·°C. Show all work and circle your final answer. Circle One: Magnesium (Mg) Manganese (Mn) Aluminum (Al) Iron (Fe)

###### FREE Expert Solution

We’re being asked to determine the specific heat capacity of the metal.

We will use the heat released by the metal piece to calculate its heat capacity. Recall that heat can be calculated using the following equation:

$\overline{){\mathbf{q}}{\mathbf{=}}{\mathbf{mc}}{\mathbf{∆}}{\mathbf{T}}}$

q = heat, J

+qabsorbs heat
–qloses heat

m = mass (g)
c = specific heat capacity = J/(g·°C)
ΔT = Tf – Ti = (°C)

The heat absorbed when melting ice at it's melting point can be represented by the equation below:

n = moles
ΔHfus = heat of fusion

Based on the given system: ###### Problem Details

Under constant pressure conditions, a 107 g block of metal at 125°C is added to a mixture of 120 g of water and 22 g of ice at 0°C. As a result, the ice melts completely and the temperature of the water increases to 7°C.

Determine the identity of the metal if it has a molar heat capacity of 24.6 J/mol·°C. Show all work and circle your final answer. Circle One:

Magnesium (Mg)

Manganese (Mn)

Aluminum (Al)

Iron (Fe)