We’re being asked **to calculate the wavelength** being emitted by an orange light with an energy of **3.13 x 10 ^{-19} J**.

Recall that the ** energy of a photon (E)** is given by:

$\overline{){\mathbf{E}}{\mathbf{=}}{\mathbf{hv}}}\left(1\right)$

where:

**h** = Planck’s constant (6.626 × 10^{–34} J • s)

**v** = frequency (in s^{–1})

Also, recall that the frequency (v) and wavelength (λ) are related:

$\overline{){\mathbf{\lambda}}{\mathbf{=}}\frac{\mathbf{c}}{\mathbf{v}}}\left(2\right)$

where:

**c** = speed of light (3.0 × 10^{8} m/s)

A photon of orange light has energy of 3.13 x 10^{-19} J. What is its wavelength?

A. 700 nm

B. 635 nm

C. 590 nm

D. 562 nm

E. 494 nm

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the The Energy of Light concept. You can view video lessons to learn The Energy of Light. Or if you need more The Energy of Light practice, you can also practice The Energy of Light practice problems.