Ch. 17 - Chemical ThermodynamicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The accompanying diagram shows how the free energy, G, changes during a hypothetical reaction A(g) +B(g) →  C(g). On the left are pure reactants A and B, each at 1 atm, and on the right is the pure product, C, also at 1 atm. Indicate whether each of the following statements is true or false. At equilibrium, all of A and B have reacted to give pure C.

Problem

The accompanying diagram shows how the free energy, G, changes during a hypothetical reaction A(g) +B(g) →  C(g). On the left are pure reactants A and B, each at 1 atm, and on the right is the pure product, C, also at 1 atm. Indicate whether each of the following statements is true or false.
A graph has progress of reaction on the x-axis and G on the y-axis (both unscaled). As the reaction progresses, the line dips from high G to low G then increases somewhat.  The difference between the initial and final G is x.

At equilibrium, all of A and B have reacted to give pure C.